A Positive Solution for Singular Discrete Boundary Value Problems with Sign-changing Nonlinearities
نویسندگان
چکیده
Let a,b (b > a) be nonnegative integers. We define the discrete interval [a,b] = {a,a + 1, . . . ,b}. All other intervals will carry its standard meaning, for example, [0,∞) denotes the set of nonnegative real numbers. The symbol Δ denotes the forward difference operator with step size 1, that is, Δu(k) = u(k + 1)− u(k). Furthermore for a positive m, Δm is defined as Δmu(k)= Δm−1(Δu(k)). In this paper, we will study positive solutions of the second-order discrete boundary value problem
منابع مشابه
A novel technique for a class of singular boundary value problems
In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...
متن کاملPositive solutions of discrete Neumann boundary value problems with sign-changing nonlinearities
R + →R is a sign-changing function. In recent years, positive solutions of boundary value problems for difference equations have been widely studied. See [–] and the references therein. However, little work has been done that has referred to the existence of positive solutions for discrete boundary value problems with sign-changing nonlinearities (see []). Usually, in order to obtain posit...
متن کاملPositive Solutions for Singular m-Point Boundary Value Problems with Sign Changing Nonlinearities
Using the theory of fixed point theorem in cone, this paper presents the existence of positive solutions for the singular m-point boundary value problem
متن کاملExistence of a positive solution for a p-Laplacian equation with singular nonlinearities
In this paper, we study a class of boundary value problem involving the p-Laplacian oprator and singular nonlinearities. We analyze the existence a critical parameter $lambda^{ast}$ such that the problem has least one solution for $lambdain(0,lambda^{ast})$ and no solution for $lambda>lambda^{ast}.$ We find lower bounds of critical parameter $lambda^{ast}$. We use the method ...
متن کاملPOSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS WITH SIGN CHANGING NONLINEARITIES DEPENDING ON x′
Using a fixed point theorem in cones, this paper shows the existence of positive solutions for the singular three-point boundary-value problem x′′(t) + a(t)f(t, x(t), x′(t)) = 0, 0 < t < 1, x′(0) = 0, x(1) = αx(η), where 0 < α < 1, 0 < η < 1, and f may change sign and may be singular at x = 0 and x′ = 0.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006